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Line Shape Analysis of Cold-worked Magnesium 
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A single-reflexion method due to Pines for line-shape analysis has been used to determine the particle 
size in cold-worked magnesium. A new expression has also been derived to determine strain from a single 
line. The results have been compared with those obtained by the Averbach-Warren method. 

Introduction 

X-ray line-broadening investigation of deformed metals 
has mostly been concentrated on the cubic class. 
Among metals having h.c.p, structure cobalt has re- 
ceived the greatest attention (e.g. Van Arkel, 1939; Ed- 
wards & Lipson, 1942; Wilson, 1942; Anantharaman 
& Christian, 1956; Houska, Averbach & Cohen, 1960; 
Mitra & Halder, 1964). Among others, zirconium 
(Mogard & Averbach, 1958) and magnesium (Lele & 
Anantharaman, 1964) have been studied to some ex- 
tent. Lele & Anantharaman (1964) have studied the 
integral widths of intensity distributions around several 
reciprocal-lattice points for magnesium filings. They 
attributed the entire broadening successively to particle 
size and strain respectively and found that the mean 
deviation from the mean for all the reftexions for strain 
was much lower than the same value for particle size; 
hence they concluded that the line broadening was due 
to strain only, and that the strain was of the order of 
1.0 x 10 -3. This work is clearly not satisfactory since 
the individual contributions of particle size and strain 
to the line broadening, assuming it to be due to the 
composite effect of the two factors, have not been 
separated. Besides this work by Lele & Anantharaman 
(1964) no other study of cold-worked magnesium has 
been reported. The aim of this paper is to apply the 
technique of line-shape analysis in determining particle 
size and strain in cold-worked magnesium. 

Experimental 

Spectroscopically pure rods of magnesium supplied by 
Johnson Matthey and Co., London, were used for the 
study. The rods were rotated on a lathe head and 
lightly touched by a fresh alcohol-washed file and the 
filings were collected on a clean glass tray. Minute 
grains of iron from the file which might have become 
mixed with the magnesium filings were separated mag- 
netically. The filings were passed through a sieve hav- 
ing 325 meshes per square inch. X-ray diffraction line 
profiles for 1010, 0002, 1120, 10i3 reflexions only could 
be obtained by using the photographic technique due 
to Mitra (1963). Line profiles for other reflexions were 
not satisfactory and were therefore not used for the 
present purpose. The background of each line profile 

was carefully determined by using a technique due to 
Mitra & Misra (1966). For obtaining the geometrical 
broadening for each reflexion similar studies were car- 
ried out on magnesium filings annealed in vacuum at 
500 °C for three hours. Fourier coefficients for the pure 
diffraction line profile for each reflexion were deter- 
mined from the two sets of line profiles by using the 
deconvolution method due to Stokes (1948). For cal- 
culating the Fourier coefficients 3 ° Beevers-Lipson 
strips and an electrical desk calculating machine were 
used. 

Theoretical considerations 

Since no pair other than 10i0, 11~0 has a simple rela- 
tion, the usual Averbach-Warren (1949) technique is 
inapplicable. Hence the single-reflexion method due to 
Pines (1953) has been used for determining the particle 
size. According to this method, 

dAL ~ = ( dA~. ] = 1 (1) 
]L=0 \ dL / z=o - P  

where 

Az =nth order Fourier coefficient of the pure dif- 
fraction profile. 

Az e = nth order Fourier coefficient of the particle size 
line profile. 

=nd, a real distance in the crystallite. L 

d is given by 

2d (sin 01 - sin 00) 2d (sin 0o- sin 02) 1 
2 = g (2) 

00 = Bragg angle corresponding to peak position Of 
intensity distribution. 

01, 02=Bragg angles corresponding to positions in the 
intensity distribution where the tails merge into 
the background. 

2 =wavelength used, 
p = size of the particle in the direction considered. 

Mitra (1965) has shown that the equation (1) is valid 
for Gaussian strain distribution only. Thus the particle 
size on the basis of the Gaussian strain-distribution 
hypothesis can be determined by drawing a tangent to 
the (AL--L) curve at L = 0. 

It is well known that 
~L = P s ALAz, (3) 



where A}~ is the Fourier coefficient of the line profile 
due to strain only corresponding to AL and A~ and also 
that 

A~ =exp ( -  2nZlZz 2) (4) 
zL =Ls/d (5) 

s = r .  m .  s .  strain. 
/=o rde r  of the reflexion considering the reflexion to 
be of type 001. 

1 "00 

A n = l - n l N  and Az e = l - L / p ,  (7) 
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Fig. 1. Plot  of Fourier  coefficients At. against distance L. 
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Fig. 3. Plot of  In 1 -  L/-----p against L 2 for the 0002 reflexion. 

Equation (4) is well known to correspond to the 
Gaussian strain-distribution hypothesis. Combining 
(3), (4) and (5) we have 

AL L2s 2 
In  - -  = - 2~z 2 l 2 - -  (6) 

ALP d 2 " 

If s is independent of L, then for a given value of L, 
the plot of In (Az,/A[) against L 2 will be a straight line 
passing through the origin, and the slope of this line 
will give an estimate of s. If on the other hand s is 
dependent on L, the plot will be a curve and s can be 
determined from the slope of the curve at L = 0. 

For reflexions of the type 00/, the crystallite can be 
treated as one-dimensional with a particle-size line 
profile of the type sin 2 N~o/sin 2 ~0, which can be ex- 
panded into a cosine Fourier series having coefficients 
( N - n ) .  If  we set Ao to be 1, as is actually done, then 
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Fig.4. Plot of lnAL against 12. 
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Fig. 5. Plot  of  particle size coefficient At` e against distance L. 
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lOiO 
0002 
1120 
10i3 

Table 1. Particle s&e and lattice strain 

Particle size (A) (r.m.s. strain) x 103 
, .  ^ ^ 

Averbach2 Averbach-" 
Warren Warren 

Gaussian Cauchy Method Gaussian Cauchy method 
535 579 9.23 10.11 
720 759 990 7.58 8.30 18.32 
880 917 7.89 8.64 
800 832 7.95 8-71 

assuming of course, that all the crystallites are of equal 
size. It is clearly seen that equation (7) is consistent 
with equation (1). Thus by determining p from equa- 
tion (1), substituting in equation (7), and then using 
equation (6), s can be determined. Thus from a single 
reflexion only, particle size and strain values can be 
determined on the hypothesis that the strain distribu- 
tion is Gaussian. 

Corresponding quantities on the basis of the Cauchy 
strain distribution hypothesis can be determined from 

so= --d-. sg (8) 

and 

Pg with a=0 .2  (9) Pc= l_(rc2ls~/ad) . pg 

where suffixes c and g denote the corresponding quan- 
tities for the Cauchy and Gauss strain distribution 
hypotheses. Equations (8) and (9) follow directly from 
equations (12) and (8) respectively of Mitra (1965). 

Results and discussion 

The method described above has been used in the 
present case. Figs. 1, 2 and 3 show the determination 
of particle size and strain for several reflexions on the 
basis of the Gaussian strain-distribution hypothesis. 
Table 1 shows the particle size and strain for different 
reflexions on the basis of the Gaussian as well as the 
Cauchy strain-distribution hypothesis. The strain is 
found to be of the same order of magnitude as ob- 
served by Lele & Anantharaman (1964), although sev- 
eral times as great. This is consistent with the observa- 
tions made by Mitra (1964) for cold-worked aluminum, 
who found that while the measurement of integral 
breadth yielded a strain of magnitude 1.02 x 10 -3, that 
by line shape analysis on a Gaussian strain-distribution 
hypothesis yield a value 6.51 x 16 -3. While strain values 
show remarkable isotropy which is to be expected, 
since magnesium is elastically isotropic, the particle 
size is found to be different for different directions, the 
particle size in the 10i0 direction being almost half of 
that in other directions. The particle sizes found in the 
other three directions are of the same order of mag- 
nitude, although there is considerable variation be- 
tween them. This perhaps shows that the particles are 
neither cubes nor spheres but are of irregular shapes. 

Similar results have also been obtained for uranium 
by Krishnan, Arunachalam & Asundi (1962). In the 
usual Averbach-Warren (1949) technique the particle 
size is considered to be identical in the various direc- 
tions. To find out the effect of such a hypothesis, the 
Averbach-Warren (1949) analysis was applied to the 
10i0, 1120, pair of reflexions. Fig.4 shows plots of 
In AL against l 2 for several values of L. The intercept 
of the linear plot so obtained gave the value of In At, 
the slopes the values of z 2. From ZL, S was deter- 
mined. Fig. 5 shows the plot of AL e against L from the 
slope of which at L = 0 the particle size was determined. 
Table 1 shows these values. It is observed that the 
strain value so obtained is somewhat unexpectedly 
high, being about twice the strain obtained from the 
10T0 reflexion on the basis of the Cauchy strain-distri- 
bution hypothesis. The particle size thus obtained is of 
the same order as obtained for the 117.0 reflexion by 
the Pines (1953) method. The high value of strain shows 
that the hypothesis that the particle size in the 10i0 
and 11~.0 directions are the same is not perhaps cor- 
rect. Thus, there appears to exist a real particle-size 
anisotropy. 
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